

Medis Suite MR Cardiac diagnostics made simple.

A comprehensive, time-saving and validated solution for Cardiac MR post-processing

Product Specification Sheet

Medis Suite Platform

- Support for Cardiac MR studies of all major MR vendors
- Import of studies from local storage media or via DICOM connectivity from scanner or PACS.
- Centralized database, thick client solution possible with multiple clients
- AutoQ for preprocessing data and the generation of Al myocardial contours
- Effortlessly review series side by side, utilize cross-referencing tools, quickly page through series, and perform simple caliper measurements
- Enhanced workflow by running multiple apps or prior exams in parallel
- Generate enhanced clinical reports that combine all measurements into a single document. Capture snapshots, add comments, save as PDF, and view in text format. Support for XML, DICOM Structured Report, and JSON output
- User log in and Role Based Access Control
- User interface and User manual available in multiple language for the clinical applications
- Seamless deployment of upgrade from server to clients **NEW**
- Efficient and standardized reporting by enabling customized report templates **NEW**

OMass Function Module

- Automated LV and RV function analysis on SAX images by deep learning contours and automatic series detection

 NEW
- Area-length and Bi-plane volumetric analysis methods for long axis cines enhanced with deep learning contour detection
- Quantification of custom volumes, such as atrial volumes
- Auto-detection of papillary muscles and trabeculae with "MassK mode"
- Quantification of EDV, ESV, SV, %EF, CO, CI, indexed values (BSA and height), (time to) peak
 filling and ejection rate
- Various BSA calculation methods for indexed results
- Normal ranges embedded and calculations of z-scores **NEW**
- Analysis of regional parameters, such as wall motion, wall thickness, wall thickness and wall thickness changes over time

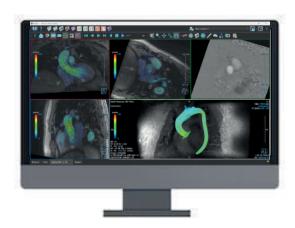
QMass Delayed Signal Intensity (DSI) module and T2w analysis

- Various threshold calculation methods for automatic infarct detection
- Enhanced workflow by deep learning contours **NEW**
- Quantification of infarct size (% and mass) and infarct transmurality
- Quantifying regions of hyper-, intermediate and hypointense signal intensities
- Threshold per slice or per sequence of slices
- T2 weighted analysis for oedema detection
- Combined DSI and T2 weighted analysis for calculating myocardial salvage
- T2-ratio

QMass Time Signal Intensity (TSI) module

- Enhanced Contour registration to correct for breathing motion
- Baseline correction methods
- Automatic calculation of relative upslope
- Signal intensity curves per myocardial segment and user defined ROI's
- Set transmural range for measurement of subendocardial and subepicardial perfusion curves
- Segmental results are generated and are part of the XML and JSON report output

QMass T1 and T2/T2* analysis module


- Measure T1 value based on automatic motion corrected T1 Maps
- Calculation of T1 relaxation time in MOLLI and Look Locker sequences
- Calculation of residual maps
- Color overlay
- Quantification of iron overload from T2* analysis **NEW**
- Fast quantification of T2 and T2* decay time and decay rate
- Correct for breathing motion

OFlow module

- Phase-contrast MR blood flow analysis
- Automatic contour detection
- Various background correction methods to correct for flow-induced artifacts
- Phase unwrapping to correct for aliasing
- Color-coding to visualize velocities
- Display of min and max velocity pixels
- Calculation of velocities, blood flow, regurgitation in up to 4 ROI's
- Calculation of maximum pressure and mean systolic pressure gradient
- Quantification of CSF flow
- Automated pulmonary and systemic flow ratio (Qp/Qs) for efficient detection of cardiac shunt

 NEW

QFlow 4D module

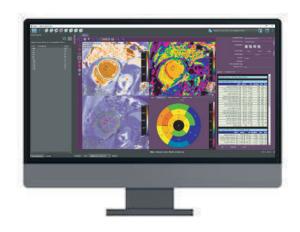
- Automatic mitral valve tracking for flow and regurgitation quantification

 NEW
- Support for manual tricuspid, aortic and pulmonary valve tracking
- Simple MPR (multi planar reformatting) tool to quantify flow volumes, regurgitation fraction and peak flow velocity
- Automatic noise removal NEW
- Phase unwrapping functionality to correct for aliasing
- Automatic background offset correction NEW
- Various overlay options are available, including color overlays for speed, streamlines, and vectors
- Visualize flow patterns on 2D anatomical images

QStrain

- Automatic strain quantification for LV, RV, LA and RA using deep learning contour detection and automatic series detection
- Quantification of global longitudinal, radial and circumferential strain as well as regional analysis
- Rubber banding and other contour editing tools to allow for easy contour manipulation
- Quantification of delta rotation
- Quantification of 16 segment AHA strain parameters: strain, strain rate, velocity and displacement
- Generate results for endo, mid and epicardial wall
- More extensively research report can be exported in XML and MS-Fxcel
- Quantification of Inward Displacement (InwD) and Inward Displacement Index (InwInd) allowing for the objective evaluation of regional dysfunction
- Automated biplane analysis of the left atrium for more accurate assessment of left atrium volume or strain* NEW
- Evaluate left atrial strain across all functional phases of the cardiac cycle (reservoir, conduit and contractile), supporting deeper insights into atrial function*

 NEW



3DView module

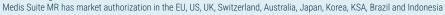
- Viewing 3D MR and CT Angiography series, double oblique viewing, MPR, MIP, slabbed MIP, VR
- CPR (Curved Planar Reformatting)
- Efficient caliper measurements, including double distance measurement
- Sculpting (isolating custom volume of interest)
- Create reformats

QMap T1, T2 and ECV mapping For research use only

- Create parametric maps for T1, T2 and ECV
- Comprehensive results for myocardial segments represented in a bullseye plot and up to 4 user-defined ROIs per slice
- Display of relaxation or decay curves
- Automatic Motion Correction for pre- and post-contrast T1 images
- Flexible manual motion correction
- Flexible co-registration of T1 native (pre-contrast) and T1 post-contrast maps
- The 16 segment model results are part of the XML and JSON report output
- Save maps as DICOM and results to MS Excel

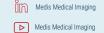
QStrain Hemodynamic Forces and PV loop For research-use only

- Instant calculation of Hemodynamic Forces from routine apical views, based on a mathematical model validated against 4D Flow MRI
- Hemodynamic Forces (HDF) analysis for the evaluation of IntraVentricular Pressure Gradients (IVPGs), a global property describing LV function
- Calculation of non-invasive PV loops from routine apical views including a simulator tool.


Available packages

Medis Suite MR		Packages	Packages				
	Modules	Premium Plus	Advanced	Essentials	Add-on 4DFlow	Add-on PV-loops	
	Medis Suite Platform	~	~	~			
	AutoQ	~	~	~			
Clinical	3D View	~	~	~			
	Function Global	~	~	~			
	Function Regional	~	~				
	DSI	~	~	~			
	TSI	~	~				
	T1	~	~				
	T2/T2*	~	~				
	2D Flow	~	~	~			
	4D Flow				~		
	Strain LV	~					
	Strain RV and Atrium	~					
	Inward Displacement	~					
Research	T1	~	~				
	T2/T2*	~	~				
	ECV	~	~				
	Hemodynamic Forces	~					
	PV-Loops					~	

Legal Statements


Medis Suite MR is based on image processing algorithms, developed at the Division of Image Processing, Department of Radiology, Leiden University Medical Center, the Netherlands. Medis is a registered trademark of Medis Associated BV.

© 2025, Medis Medical Imaging 8.21.200.40.8

